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Executive Summary 

The following report outlines a procedure and algorithm to optimize the potential 
knowledge gained about a complex system when performing robustness testing and 
faced with a set of constraints.  In particular, this project was catalyzed by the need to 
put a value on testing.  Included with this project report is a proof of concept created in 
MS Excel utilizing its VBA developer tool.  In short, a test network is created by 
establishing test relationships and then assigning each an expected knowledge value.  
With these values and an understanding about the relationships between the tests, an 
optimization about the total potential knowledge of the system can be acquired while 
minimizing testing costs and/or effort.   
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Introduction 
Test and evaluation (T&E) is a critical component in systems engineering.  In many 
circumstances T&E is used to verify that a given system and its components are meeting 
the requirement specifications assigned to each and every level of the design.  This is 
represented in the widely used Vee Model in systems engineering, see image below. 

[1] 

This type of T&E is typically very specific; all tests to be performed are known in 
advance and all tests will usually be performed.  In the project definition stage, or left 
side of the Vee model, these tests will be designed and the expected cost and effort 
associated with them will be determined.  With this type of T&E situation there is very 
little variance in cost and effort, assuming all tests pass without problems.  Essentially, 
you know exactly what tests will be performed, when they will be performed, how much 
they will cost, and what effort will be needed to complete them.  Additionally, the 
knowledge gained from testing is known because all tests must pass, at least within 
some acceptable tolerances.  

This is not the type of T&E situation that this project is attempting to optimize; we will 
optimize a situation that tests the robustness of a system.  

“Robustness is defined as the degree to which a system operates correctly in the 
presence of exceptional inputs or stressful environmental conditions. [IEEE Std 
24765:2010]” [2]   

This type of testing requires a selection strategy to choose the best tests to be performed 
because there are more tests possible than resources will permit. 

The Problem of Limited Resources 
In December of 2000 a study was concluded by the Defense Science Board Task Force on 
Test and Evaluation Capabilities.  This study states, “Testing must be robust and 
thorough otherwise a false sense of confidence and security can be generated when critical 
tests are waived or avoided. The pursuit of the reformed acquisition goals of “faster, 
better, cheaper” must not compromise thorough, robust, objective testing.” [3] A common 
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problem arises when testing the robustness of a system, having more tests that can be 
performed than available resources. 

 This begs the question: 

Which tests should be performed to gain the most knowledge about a system when there is 
a limited amount of time, funding, and/or testing capabilities? 

Knowledge vs. Time, Funding, and Testing Capabilities 
With little convincing, one should understand that performing a test takes some amount 
of time, and every time you complete a test you gain some amount of knowledge or 
information about the system being tested. Furthermore, a limited amount of testing 
capabilities will also limit your ability to run multiple tests concurrently.  For example, 
if you have 100 tests that you want to perform to analyze your system in the least 
amount of time possible (assuming there are enough funds to do so,) then you should 
perform all tests concurrently.  This would make the total testing period as long as the 
longest test, assuming all test are passing.  There is a clear limitation here with a 
testers testing capabilities (equipment and/or test subjects).   

If you have enough testing capabilities to run 10 tests at a time, this means that you 
would have to run 10 rounds of testing to complete all 100 tests.  Now your testing 
period has significantly increased.   

What if you can’t run all of the tests even if you had unlimited time?  If you can only run 
at best 50 of the 100 possible tests due to a budget constraint, which tests should you 
perform? This leads us to yet another problem, the value of testing.  

The Defense Science Board Task Force “…found that the most significant capability 
missing in the T&E community is the ability to measure the “value of testing.”” [3] If we 
think about this problem intuitively, we could say the “value of testing” is the 
information or knowledge we receive from performing a given test. Thus the unit of 
measurement for “value of testing” is the knowledge gained. So if we know that the goal 
is to gain the most possible knowledge about the system, the obvious answer is to choose 
the tests which yield the most knowledge. But how do we determine this? To do so, we 
will introduce the concept of a knowledge gradient index later in this paper.  For now, 
let’s consider the problem of ranking and selection.  

According to Powell and Ryzhov’s Optimal Learning (2012) ranking and selection 
problems occur in many settings, and assessing and selecting for the best possible 
alternatives (tests) in such settings requires resources. These resources are assumed to 
be constrained by budget, whether this budget is in the currency of time or dollars. [4] 
Facing these testing limitations, the only solution to maximize the knowledge of a 
system under the constraints of time, money, and testing capabilities, is to optimize 
decision making regarding testing strategies. This project addresses how to optimize 
these testing strategies through the use of an algorithm.   

Relationships Between Tests 
Another element of difficulty to add to this problem is test relationships between tests.  
These relationships occur when there is a dependency between one test result and the 
knowledge to be gained from other correlated tests.  According to Frazier (2009), “We say 
that there is dependence between alternatives in [a Ranking & Selection] (R&S) problem 
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if, when we measure one alternative, we learn something about the other.” [5] The results 
of one test has the potential to either increase or decrease the assumed knowledge 
gained from performing any other related tests.  

Here is a simple example of test dependency: 

You are testing how bullet proof a car door is.  You have selected 4 possible tests 
to run:  

1) shoot the door with a .22 caliber round

2) shoot the door with a .38 caliber round

3) shoot the door with a .45 caliber round

4) shoot the door with a .50 caliber round

The first test you choose to run is test 2, because expert opinion has determined 
you get the most knowledge for the cost to perform this test.  The results of the 
test show that the car door withstood the bullet with no issue.  Knowing this 
result, how important is it to perform test 1?  Due to test dependency, the 
knowledge gained from the initial test, makes performing test 1 obsolete. If the 
door can withstand a .38 caliber bullet, then it will certainly withstand a .22 
caliber bullet.  We clearly see that performing test 1 will yield no increase in 
knowledge about the door.   

Similar logic can be applied to tests 3 and 4. Since this test dependency exists, we 
know the results of test 2 will change the knowledge gained from 3 and 4 in a 
positive upward direction. In conclusion, to gain the maximum knowledge about 
a system, we should always update the potential knowledge that can be gained of 
all related tests.    

Project Motivation 
DoD’s reliance on network centricity has increased the need for secure cyberspace, which 
is difficult to test due to schedule slippages and evolving operational needs. To mitigate 
this, we propose an analytical method to optimize the test planning process, thereby 
accelerating test schedules while improving test coverage. [6]  One constraint of interest 
not mentioned in this statement is cost, which will be a focal point of this project.  Hence 
we focus on two research questions: 

(1)  How can testers maximize knowledge about the system under test efficiently? 
(2) How should test strategies change to optimize available resources? 

These two questions have been the motivation for the following research question this 
project is concerned with: 

Which tests should be performed to gain the most knowledge about a system when there is 
a limited amount of time, funding, and/or T&E resources?   

The solution provided in this paper will avoid limitations faced by Test Engineers when 
applying Design of Experiments (DOE) to deterministic systems.  Applying DOE to 
deterministic systems – where the same inputs generate the same outputs over time – is 
often sufficient. However, when dealing with nondeterministic systems where emergent 
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behaviors are the norm, DOE has significant limitations. Such limitations are based on 
the following: 

(1) The assumption that the entire trade space is known; 
(2) The ability to automatically re-plan the test strategy as emergent behaviors 

are observed; 
(3) The assumption that the value of each test is constant regardless of the 

feature it is intended to test; and 
(4) The assumption that the cost of each test (e.g., time, money, equipment) is 

the same.” [6] 
Limitations 2 and 3 should be clear when compared to the bulletproof car-door example 
mentioned previously.   

Solution 
We propose the following 6 steps to solve this problem: 

Test Planning Step 1: Prioritize system and/or mission requirements for the 
system under test.  

Test Planning Step 2: Define and quantify the cost, c, of running each test. This 
will be calculated using a parametric cost model that considers the complexities 
of net centric systems and the resources (in terms of people, equipment, and 
facilities) needed to execute each test. 

Test Planning Step 3: Determine θ�d0, the initial estimate of the expected reward 
for making decision d, where each decision involves selecting a specific test that 
should be executed. In this case, a reward can be considered to be the generation 
of new knowledge about the system under test. 

Test Planning Step 4: Determine σ�d0, the initial estimate for the standard 
deviation of θ�d0. The standard deviation is based on the fact that the expected 
rewards are normally distributed. Higher values of σ�d0 indicate lower confidence 
in the decision under consideration. 

Test Planning Step 5: Execute the knowledge gradient algorithm to calculate the 
knowledge gradient index (KG) for feasible decisions. Since the KG jointly 
optimizes three criteria: value, cost, and knowledge acquired, it can be used to 
develop a prioritization of the tests to be performed. At this stage in the testing 
process, the first phase of testing is performed and data [is] collected about the 
performance of the system. 

Step 6: Execute Bayesian updating algorithm to re-calculate KG index based on 
new information (e.g., test results, shifting evolving mission requirements, test 
costs, test facility availability, etc.) and provide an updated test strategy based 
on a recommended prioritization. 

Given the existing research, these steps will not be addressed entirely in this project. In 
particular, steps 3 and 4, which partly tie into step 6, have been previously worked on by 
Amjad Chatila in his paper “An Introduction to Qualitative Resilience,” where he 
discusses “Beliefs and decisions using probabilistic graphs to adapt Bayesian Belief 
Networks.” [7] 
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To validate the functionality of the Algorithm created, we have developed a simplified 
solution. In order to execute these steps and provide a proof of concept, the following 
assumptions and simplifications have been made: 

• Step 1:  The testing requirements shall be prioritized by KG/$

• Step 2:  Cost will be randomly assigned to a pool of tests rather than the
development of a parametric model

• Step 3:  The expected knowledge reward for performing a given test will be
randomly generated from a predetermined KG index

• Step 4:  For simplification of performing step 6, standard deviation of the KG
index won’t be considered

• Step 5:  Only knowledge will be optimized for KG index working within the
budget and resource constraints, for the purpose of this project value has been
defined as knowledge

• Step 6:  Bayesian probability will be disregarded from the updating as a
byproduct of the assumption in step 4, expected values from step 3 will instead
be assigned as constants

This proposed solution wouldn’t be necessary if the number of tests were small.  If this 
was the case, it could easily be solved by hand in little time.  However, when performing 
hundreds of tests, this is an impossible task without the help of an algorithm.   

The foundation of this algorithm solution is to take a pool of tests and map their 
relationships into a network structure. Using this network map, we can create a logical 
9 step process coupled with a network algorithm to optimize the knowledge gained of a 
system that is undergoing robustness testing.  This 9 step process expands on Valerdi’s 6 
step solution.  In the following section we will review network structures.     

Overview 
Knowledge Gradients 
A brief discussion about knowledge gradients (KG) is in order, however, the development 
of one and its policies as it applies to robustness testing is beyond the scope of this 
project.  We only aim to create an algorithm that can optimize a KG index under a set of 
testing constraints.  

The definition of KG is well stated in Powel (2012): 

“The knowledge gradient is the name we apply to the simple idea of measuring the 
alternative that produces the greatest value, in expectation, from a single observation,” 
and “the concept of the knowledge gradients [can be applied to] ranking and selection 
problems.” 
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To develop a KG index, one should start by defining a KG policy, in this case, a 
“correlated KG policy.” Frazier explains this in his dissertation: 

“…we develop a general class of practical and theoretically well-founded 
information collection policies known as knowledge-gradient (KG) policies. KG 
policies have several attractive qualities: they are myopically optimal in general; 
they are asymptotically optimal in a broad class of problems; they are flexible and 
may be computed easily in a broad class of problems; and they perform well 
numerically in several well-studied ranking and selection problems compared 
with other state-of-the-art policies designed specifically for these problems.” [5] 

Robustness testing results vary from system to system, requiring KG to be uniquely 
created for each.  For this reason, this project only provides a generic KG index to 
validate the algorithms functionality.  

Networks 
The simplest definition of a network is “a group or system of interconnected people or 
things,” [8] in this case, tests.  The image below is a visual representation of a network.  
The numbered circles, or nodes, represent a given test.  The lines that connect the nodes 
are the arcs of the network. 

[9] 

Computers and programming languages can’t understand a network in this format.  
Instead, we represent the network in the form of an adjacency matrix, as seen below. 
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This adjacency matrix is representative of the visual network above; it is left to the 
reader to make the connection between the two.  Note that 1 represents an arc (line 
between nodes) and none otherwise. 

Nodes 
As just stated, the nodes represent a specific test.  Each node should contain 
characteristics about the test, i.e. the identification number, the expected cost, the 
estimated effort, and the knowledge the test will provide about the system.  I will briefly 
mention here that a well-defined knowledge gradient (KG) policy needs to be created to 
represent the knowledge gained by performing a given test.   

Arcs 
The arcs or connections between the nodes not only represent a relationship between 
two or more nodes, but also contain a value that changes a characteristic of a related 
node.  In our case, these are called knowledge gradient scalers (KGS).  Using the 3 node 
network below, you can see that if you performed Test 2 with X results, that test would 
scale a characteristic (KGS) of the neighboring nodes/tests.  For the problem we are 
solving, we are changing the value of knowledge that could be gained from the 
neighboring tests based on our current test result.  If each of the 3 tests had a KG index 

Test # 1 2 3 4 5 6 7 8 9 10

1 0 0 1 0 0 0 0 0 0 0

2 0 0 0 1 1 0 0 0 0 0

3 1 0 0 1 0 1 1 0 1 0

4 0 1 1 0 0 1 1 1 1 0

5 0 1 0 0 0 0 1 1 0 0

6 0 0 1 1 0 0 1 0 1 0

7 0 0 1 1 1 1 0 1 1 1

8 0 0 0 1 1 0 1 0 0 0

9 0 0 1 1 0 1 1 0 0 0

10 0 0 0 0 0 0 1 0 0 0
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value of 10, and we obtained the X results from Test 2, Test 1 would have a new 
knowledge value of 7.7, and Test 3 would be 16.3. Thinking back to the bulletproof car 
door example, and seeing this mathematical result, it is easy to see how this works. 

We have the same issue here as we did with the network representation; computers and 
programming languages can’t understand this arc-node relationship in this format.  
Once again, we can represent the network in the form of an adjacency matrix.  We leave 
it to the reader to make the connection between the two. 

Network Structures 
The next thing to understand about networks and the node-arc relationship is that up 
until now we have only shown examples of undirected networks.  This means that the 
KGS values are a two-way street.  Looking at the previous example, the 3 test network, 
if you had performed Test 1 first, it would have scaled Test 2 to a value of 7.7.  For the 
problem we are discussing, it would be quite rare if two different neighboring tests had 
an equal scaling effect on each other’s KG index value.   

In most cases we will be dealing with directed networks, meaning a one-way street, and 
possibly a one-way street in two directions.  Look at the following example: 

You see that the arcs now have arrows suggesting a direction, hence a directed network.  
If test 1 is performed first, the result will decrease the KG index value from performing 

Test # 1 2 3

1 0 0.77 0

2 0.77 0 1.63

3 0 1.63 0
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Test 2.  If you perform Test 2 first, the results have no effect on the KG index value from 
Test 1.  It should be apparent how the two one-way streets (arcs) between Tests 2 and 3 
affect the knowledge to be gained from either test, depending on which test is performed 
first.   

There is some basic terminology to know about node relationships.  Looking at Test 2, 
the connecting nodes that point to it, are called the predecessors.  The connecting nodes 
that have arrows pointing away from Test 2 are called successor nodes.  We will use 
these terms for the remainder of this paper. 

Methods & Procedure 
In this section we present a process that an experienced tester could utilize while 
optimizing the total knowledge to be gained. This process allows the tester to perform 
robustness testing of a system while considering constraints such as resources, effort, 
and cost.  For this process we assume that all possible tests that could be performed are 
identified and well understood.   

Test Optimization Process 
Step 1:  Establishing the Test Network 
Each test is assigned a unique test identification number, if not already done, a tester 
can do this.  Then, they identify all successor tests in which the current tests outcome 
will influence their KG index values. This information will be used later to create the 
test network to be used in the algorithm.  Below is a visual example of a size 15 network. 
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Step 2:  Knowledge Gradient Index 
A well-defined KG index needs to be created to represent the knowledge that a given 
tests tells us about the system of interest.  This is extremely subjective and should be 
done by an expert who is very familiar with T&E, as well as the type of system being 
tested. For this network of tests, we will be using a generic 1 to 5 value gradient index, 
where 5 is the greatest amount of knowledge that can be initially gained.  In order to 
keep a consistent system of measurement, the KG index must have a very specific KG 
policy developed that describes how test results are valued at every level of the index.  
See the example below, and note that there is no description provided for each KG index 
value due to no creation of a KG policy.  

Step 3:  Assigning Expected Effort and Cost 
Every test should have an expected cost and the estimated effort associated with it.  A 
test node could contain a variety of different information depending on what constraints 
you want to optimize to. For this project we are going to look at cost and/or effort as it 
affects overall knowledge of the system. Once this step is complete, all node information 
for the network is defined. 

Step 4:  Knowledge Gradient Scalars  
Using the results of Step 1, for every test a tester will assign each of the identified 
successor tests an initial KG index scalar (KGS). If the test results for a given network 
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are binary, pass or fail, 1 or 0, then the tester will just assign a KGS value to each of the 
test network arcs. However, if the tests results are complex or have multiple criteria to 
be considered passing than a KG policy is used create a binary result.  In this case the 
KGS becomes a variable, we will avoid this situation for this project. Overall, this is 
extremely subjective and needs to be well thought out by an expert tester.  Below is a 
finished visual example of a test network.  

Step 5:  Inputting the Network Data 
There are many different ways to input the network data into the algorithm.  The 
simplest way is to have a friendly user interface that doesn’t require the user to have to 
code this data directly in. For the proof of concept provided later in this paper, we use 
adjacency matrices for the arc data, lists for the node data, and made it easy to input by 
using an easily customizable user interface.  Regardless of programming language or 
interface design, once a tester has fully completed Steps 1 thru 4, they need to input the 
information into the algorithm. 

Step 6:  Run Algorithm  
**If returning from Step 9, skip the following and just run the algorithm. 

Before you run the algorithm, constraints must be assigned and inputted.  These 
constraints could include a maximum cost ceiling, a maximum effort ceiling (or time 
allowed), and the limitation of testing resources.  This last constraint is essentially the 
maximum amount of tests you want to run concurrently.  With these three constraints 
assigned in the algorithm, it is ready to run.  

The following is a visual representation of the algorithm function to perform the 
optimization.  This flow chart includes Steps 7, 8, and 9. 
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Step 7:  Perform Suggested Tests 
After running the algorithm, it will return the recommend tests to perform for the 
current round of testing.  These tests will be selected based on their KG index value per 
dollar.  As tests are being completed, proceed to Step 8. 

Step 8:  Input Test Results 
No matter how the user interface was created, there needs to be a results section to 
enter the final test results.  The complexity of this input area will be dependent upon the 
type of test results you are returning; this is contingent on the KG policy developed.  For 
this project a simple binary test result will be used, pass or fail.  The KG policy to value 
the KGS’s could be an additional algorithm just to interpret testing results.  We leave 
this for a tester or student who desires to continue the development the knowledge 
gradient for a specific system.  Input the test results. 

Step 9:  Repeat Steps 6 – 8 
After every round of testing is complete, you will need to repeat Steps 6 thru 8.  This will 
continue until either the cost ceiling or effort ceiling has been reached. With the proof of 
concept provided with this project, you can see after every round how much has been 
spent, how much effort has been used, and how much knowledge has been gained about 
the entire system.  Once a ceiling has been reached and multiple rounds have been 
performed you can see the totals for all. 

Assumptions & Limitations 
There is a clear and evident limitation to this procedure and algorithm solution – it has 
to be customized for every type of system under robustness testing, especially the KG 
policy.  It would be ideal to make a one-size-fits-all algorithm based solution that is 
simple and can accommodate the majority of robustness testing situations, but that is 
not feasible. 
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It could be possible when performing robustness testing on some types of widgets, to 
create a one-size-fits-all algorithm solution (like durability or reliability testing).  For 
example, if performing durability testing on an automobile, it may be possible to make a 
solution that could be used on every type of automobile.  This is because every 
automobile has the same basic overall design and would undergo the same or similar set 
of tests to determine its robustness (durability).  The variation would be minimal.  

Due to the customized nature of the algorithms implementation, the proof of concept 
provided with this report is simplified and will represent a generic version of this test 
optimization process.  

Proof of Concept Simplification 
The goal of this project is to create a proof of concept that validates the T&E situation of 
robustness testing.  Simply put, having far more tests to conduct then realistically 
feasible under a set of constraints.  Therefore, the proof of concept shown in the next 
section and provided with this report has been simplified to only validate the concept 
and algorithm.  The following is a list of simplifications and/or assumptions:  

• All associated test metrics (identification #, fixed cost, variable cost, required
effort, and KG score) are randomly generated and assigned

o KG index values are a 1 to 10 scale, were 10 is max knowledge
• Test relationships or network structure was randomly generated
• KGS values are static and randomly generated
• All tests are assumed to have passed the first time
• Algorithm does not pause between testing rounds because KGS’s are static and

predetermined, therefore no need for a manual update
• Effort and total effort are only to view, not used as a ceiling constraint

Programming Language 
To make the proof of concept more user friendly, MS Excel was chosen for its convenient 
user interface and its developer tool, VBA.  Another reason it was selected is everyone 
has easy access to MS Excel, so the file accompanying this project paper can be easily 
viewed, used, and modified by anyone. With the limitation of being unable to create a 
one-size-fits-all algorithm tool, MS Excel can easily be customized to any testing 
situation.   

Proof of Concept 
Step 1:  Establishing the Test Network 
The network being optimized is constructed of a 100 tests, and the network structure 
was randomly generated.  The following image is a screen shot of only the first 25 tests.  
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Steps 2 & 3:  Scoring the Knowledge Gradient Index (KG) and 
Assigning Expected Effort and Cost 
Everything in the grey boxes is randomly generated.  Any of these values can be easily 
changed as desired.  Also, this view is less cumbersome than in step 1, this chart shows 
the number of successors and predecessors from the test relationship network.  The 
KG/$ is calculated automatically from the grey boxed inputs.  The first 40 tests are 
shown below. 

A "1" indicates an arc between test nodes, a "0" indicates no arc between tests nodes

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0
5 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
13 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
14 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
18 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
19 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
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Step 4:  Knowledge Gradient Scalars (KGS) 
These KGS values, as mentioned previously, are completely static and do not change via 
pending results.  All of these values were randomly generated between 0 and 2.  Below is 
a section of the KGS’s for the 100 test network created for this proof of concept. 

Test #
Test Cost with 

No Labor
Person Hours to 
Complete Test

Test Cost with 
Labor

Knowledge 
Gradient (KG)
(1 to 10 scale)

# of Successor 
Tests

# of Predecessor 
Tests

KG/$ x 1000

100 $4,248,299.00 20489 $6,297,199.00 724 937 937 14.686017641

1 $24,036.00 170 $41,036.00 9 8 15 0.219319622
2 $7,813.00 55 $13,313.00 4 9 8 0.300458199
3 $55,593.00 241 $79,693.00 9 12 7 0.112933382
4 $68,505.00 357 $104,205.00 7 9 11 0.067175279
5 $70,567.00 278 $98,367.00 6 7 12 0.060996066
6 $14,769.00 85 $23,269.00 8 12 6 0.343805063
7 $52,680.00 224 $75,080.00 4 7 7 0.053276505
8 $69,140.00 321 $101,240.00 8 7 7 0.079020150
9 $55,829.00 228 $78,629.00 8 7 7 0.101743631
10 $63,104.00 325 $95,604.00 9 10 10 0.094138321
11 $78,561.00 331 $111,661.00 7 5 6 0.062689748
12 $37,052.00 76 $44,652.00 6 10 12 0.134372481
13 $63,642.00 84 $72,042.00 7 9 9 0.097165542
14 $32,323.00 337 $66,023.00 8 9 9 0.121169895
15 $25,403.00 143 $39,703.00 10 9 5 0.251870136
16 $56,058.00 70 $63,058.00 6 12 7 0.095150496
17 $51,790.00 321 $83,890.00 7 8 12 0.083442603
18 $11,635.00 109 $22,535.00 8 11 12 0.355003328
19 $49,288.00 310 $80,288.00 4 13 6 0.049820646
20 $43,708.00 94 $53,108.00 6 10 11 0.112977329
21 $35,109.00 237 $58,809.00 5 5 14 0.085021000
22 $54,898.00 288 $83,698.00 5 9 12 0.059738584
23 $53,627.00 340 $87,627.00 7 4 8 0.079884054
24 $15,068.00 123 $27,368.00 6 9 10 0.219234142
25 $34,910.00 53 $40,210.00 9 10 8 0.223824919
26 $20,699.00 133 $33,999.00 9 10 10 0.264713668
27 $54,515.00 110 $65,515.00 6 10 10 0.091582080
28 $67,469.00 171 $84,569.00 5 16 12 0.059123319
29 $48,978.00 323 $81,278.00 5 9 14 0.061517262
30 $29,417.00 219 $51,317.00 7 11 15 0.136407039
31 $24,884.00 166 $41,484.00 9 10 8 0.216951114
32 $29,437.00 83 $37,737.00 9 14 10 0.238492726
33 $34,953.00 110 $45,953.00 10 13 6 0.217613649
34 $29,703.00 288 $58,503.00 8 8 9 0.136745124
35 $67,356.00 383 $105,656.00 7 10 5 0.066252745
36 $36,830.00 229 $59,730.00 4 5 12 0.066968023
37 $49,502.00 139 $63,402.00 8 10 14 0.126178985
38 $43,876.00 186 $62,476.00 5 6 11 0.080030732
39 $8,983.00 37 $12,683.00 5 9 14 0.394228495
40 $74,470.00 342 $108,670.00 8 12 10 0.073617374
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Step 5:  Inputting the Network Data 
Steps 1 thru 4 shows how to input the network data into the MS Excel interface.  

Step 6:  Run Algorithm 
Before running the algorithm, the constraints must be inputted as shown below.  The 
algorithm has been programmed for a 100 test network, therefore never change the 
“Total # of Tests:” cell, which is shown as an adjustable constraint.  It is not.  The 
constraint called “# of Tests/Round” is the testing constraint.  This limits the amount of 
tests that can be performed at one time (a given round of tests.)    

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 1.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.43
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00 1.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.59 1.43 0.00 0.00
5 0.00 0.00 0.00 0.00 1.23 0.00 0.00 0.04 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 1.38 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.72
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.65
13 0.00 0.00 0.70 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 1.05 0.00 0.00 0.00 1.41 0.00 0.82 0.00 0.00 0.00 0.12 0.00 0.00 0.00 1.27 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.07 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 1.57 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00 1.90 0.00 0.00
19 0.00 0.00 1.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00 0.00 0.66 1.78 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.61 0.85 0.00 0.00 0.00 0.00 0.00 0.00
21 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
22 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.13 0.00 0.00
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.01 0.00 1.33 0.00 0.00 0.00
26 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.44 0.00 0.00 0.00 0.00 0.00 0.00 1.82
27 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00
28 0.00 0.00 0.00 0.00 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00
29 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30 0.75 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Once all constraints have been entered, run the algorithm by pressing the “run 
Algorithm” button.  Note that if tests round results are visible, the “CLEAR” button 
must be used before running the algorithm.  This will be abundantly clear in the next 
step. 

Step 7:  Perform Suggested Tests 
Below is the output displayed on the “Interface” tab contained within the proof of 
concept.  This displays the first round of recommend tests to be performed concurrently, 
including associated information. 

Step 8:  Input Test Results 
On the previous step, step 7, the algorithm would pause if a tester was actually using 
this process, procedure, and algorithm to optimize the knowledge about a system.  While 
paused the results would be inputted into the algorithm so the KGS’s for the successor 
tests can be manually updated.  This proof of concept does not pause because all tests 
are assumed to pass which creates static KGS’s and simplifies the algorithm.  

Test #
Test Cost with 

No Labor

Person 
Hours to 

Complete 
Test

Test Cost with 
Labor

Knowledge 
Gradient (KG)
(1 to 10 scale)

# of Successor 
Tests

# of 
Predecessor 

Tests
KG/$ x 1000

Round 1:
78 $7,562.00 50 $12,562.00 10 7 8 0.7960515841
99 $13,508.00 66 $20,108.00 8 8 10 0.3978516014
39 $8,983.00 37 $12,683.00 5 9 14 0.3942284948
84 $11,421.00 40 $15,421.00 6 10 10 0.3890798262
63 $15,099.00 61 $21,199.00 8 8 12 0.3773762913

Test Order to Meet Parameters
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Step 9:  Repeat Steps 6 – 8 
The proof of concept repeats steps 6 thru 8 until the cost ceiling constraint has been 
reached.  Whatever that value is, the algorithm stops once it displays the last test that 
exceeded the cost ceiling.  Basically, if the ceiling cost is $100 dollars and the current 
total is $91, and assuming the next test cost $15 to perform, the algorithm would 
recommend performing this test, and the total spent on testing would be $106.  The 
algorithm is set to spend all of the ceiling cost value.   

Results 
Using the constraints that can be seen on the image in step 6, here are the final round 
by round results: 
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Test #
Test Cost with 

No Labor

Person 
Hours to 

Complete 
Test

Test Cost with 
Labor

Knowledge 
Gradient (KG)
(1 to 10 scale)

# of Successor 
Tests

# of 
Predecessor 

Tests
KG/$ x 1000

Round 1:
78 $7,562.00 50 $12,562.00 10 7 8 0.7960515841
99 $13,508.00 66 $20,108.00 8 8 10 0.3978516014
39 $8,983.00 37 $12,683.00 5 9 14 0.3942284948
84 $11,421.00 40 $15,421.00 6 10 10 0.3890798262
63 $15,099.00 61 $21,199.00 8 8 12 0.3773762913

Round 2:
18 $11,635.00 109 $22,535.00 13.41614818 11 12 0.5953471568
79 $29,760.00 101 $39,860.00 15.19587204 10 4 0.3812311098
80 $15,426.00 77 $23,126.00 8 9 12 0.3459309868
6 $14,769.00 85 $23,269.00 8 12 6 0.3438050625
2 $7,813.00 55 $13,313.00 4 9 8 0.3004581988

Round 3:
91 $33,746.00 273 $61,046.00 18.46964821 10 5 0.3025529635
34 $29,703.00 288 $58,503.00 15.66614675 8 9 0.2677836479
26 $20,699.00 133 $33,999.00 9 10 10 0.2647136680
66 $24,664.00 114 $36,064.00 9 9 5 0.2495563443
32 $29,437.00 83 $37,737.00 9 14 10 0.2384927260

Round 4:
62 $24,070.00 276 $51,670.00 18.77429532 10 12 0.3633500158
98 $36,835.00 138 $50,635.00 12.36962494 7 6 0.2442900156
47 $45,553.00 307 $76,253.00 17.9647695 12 9 0.2355942651
31 $24,884.00 166 $41,484.00 9.709146719 10 8 0.2340455771
85 $26,290.00 212 $47,490.00 11.00391975 11 8 0.2317102494

Round 5:
90 $38,010.00 270 $65,010.00 14.79434128 10 8 0.2275702396
59 $38,383.00 361 $74,483.00 15.40307924 14 6 0.2067999307
14 $32,323.00 337 $66,023.00 11.92602309 9 9 0.1806343712
64 $41,244.00 120 $53,244.00 9.23725851 13 14 0.1734891915
41 $52,167.00 222 $74,367.00 12.66168027 15 6 0.1702593928

Round 6:
52 $35,055.00 276 $62,655.00 10 12 7 0.1596041816
23 $53,627.00 340 $87,627.00 13.86413634 4 8 0.1582176309
88 $52,468.00 48 $57,268.00 9 11 7 0.1571558287
73 $60,088.00 264 $86,488.00 12.4897378 12 13 0.1444100662
92 $32,151.00 329 $65,051.00 9.053421813 6 12 0.1391742143

Round 7:
72 $54,751.00 105 $65,251.00 14.84998627 15 4 0.2275825086
82 $64,048.00 108 $74,848.00 10.56398447 6 6 0.1411391683
48 $34,839.00 160 $50,839.00 7.074814671 10 5 0.1391611690
1 $24,036.00 170 $41,036.00 5.541901938 8 15 0.1350497597
29 $48,978.00 323 $81,278.00 10.43128572 9 14 0.1283408267

Round 8:
37 $49,502.00 139 $63,402.00 12.28203952 10 14 0.1937169099
10 $63,104.00 325 $95,604.00 13.32570212 10 10 0.1393843576
30 $29,417.00 219 $51,317.00 6.682373959 11 15 0.1302175489
54 $61,522.00 161 $77,622.00 9.851865347 7 5 0.1269210449
67 $71,615.00 233 $94,915.00 11.60010203 12 8 0.1222156880

Round 9:
60 $40,163.00 198 $59,963.00 10.73226259 12 8 0.1789814150
42 $30,122.00 342 $64,322.00 10.48296749 12 11 0.1629763921
96 $34,166.00 347 $68,866.00 7.758356921 10 13 0.1126587419
16 $56,058.00 70 $63,058.00 6.930850224 12 7 0.1099123065
11 $78,561.00 331 $111,661.00 11.56701554 5 6 0.1035904706

Test Order to Meet Parameters
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Round 10:
13 $63,642.00 84 $72,042.00 8.747415279 9 9 0.1214210499
51 $59,615.00 315 $91,115.00 9.864680618 11 7 0.1082662637
33 $34,953.00 110 $45,953.00 4.687299829 13 6 0.1020020418
28 $67,469.00 171 $84,569.00 8.285576672 16 12 0.0979741592
65 $28,478.00 151 $43,578.00 4.226974454 5 5 0.0969978993

Round 11:
83 $54,318.00 383 $92,618.00 12.9718796 5 16 0.1400578678
5 $70,567.00 278 $98,367.00 12.34231374 7 12 0.1254720968
86 $69,828.00 170 $86,828.00 7.353564473 12 8 0.0846911650
36 $36,830.00 229 $59,730.00 4.857932094 5 12 0.0813315268
94 $30,504.00 126 $43,104.00 3.410548684 13 9 0.0791237167

Round 12:
71 $31,113.00 75 $38,613.00 3.455298042 9 15 0.0894853558
15 $25,403.00 143 $39,703.00 3.370511478 9 5 0.0848931184
93 $24,082.00 283 $52,382.00 3.873943752 4 7 0.0739556289
69 $45,428.00 63 $51,728.00 3.520224038 8 10 0.0680525835
25 $34,910.00 53 $40,210.00 2.693944143 10 8 0.0669968700

Round 13:
17 $51,790.00 321 $83,890.00 6.032079735 8 12 0.0719046339
46 $71,216.00 291 $100,316.00 6.498207196 10 13 0.0647773754
87 $49,414.00 252 $74,614.00 3.770829196 6 10 0.0505378239
45 $55,504.00 286 $84,104.00 3.314062836 9 7 0.0394043427
35 $67,356.00 383 $105,656.00 3.898871433 10 5 0.0369015620

Round 14:
56 $61,081.00 235 $84,581.00 5.282694862 6 13 0.0624572287
55 $40,981.00 95 $50,481.00 1.717235909 9 9 0.0340174701
21 $35,109.00 237 $58,809.00 1.97151369 5 14 0.0335240132
43 $24,406.00 334 $57,806.00 1.62055177 8 7 0.0280343177
24 $15,068.00 123 $27,368.00 0.516795608 9 10 0.0188832069

Round 15:
53 $25,463.00 263 $51,763.00 1.313377286 11 7 0.0253728974
76 $57,288.00 382 $95,488.00 1.773499244 5 6 0.0185730065
20 $43,708.00 94 $53,108.00 0.855634772 10 11 0.0161112219
77 $43,655.00 236 $67,255.00 0.756002969 11 9 0.0112408441
38 $43,876.00 186 $62,476.00 0.526519482 6 11 0.0084275479

Round 16:
27 $54,515.00 110 $65,515.00 0.419866017 10 10 0.0064087006
68 $55,408.00 140 $69,408.00 0.438371045 7 7 0.0063158576
40 $74,470.00 342 $108,670.00 0.619603367 12 10 0.0057016966
95 $62,843.00 82 $71,043.00 0.3534205 8 9 0.0049747406
89 $55,964.00 274 $83,364.00 0.333988549 12 11 0.0040063882

Round 17:
75 $27,717.00 123 $40,017.00 0.128481811 10 9 0.0032106807
74 $45,372.00 256 $70,972.00 0.198662301 10 10 0.0027991645
3 $55,593.00 241 $79,693.00 0.146608362 12 7 0.0018396642
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Conclusion 
After testing the algorithm, there are some very interesting results on how it can not 
only optimize the knowledge gained about a system, but it can also significantly reduce 
effort and cost.   

Assume a large pool of tests (100 tests) had each been assigned KG index values, and no 
test relationship network created, including the accompanying KGS’s (meaning no KG 
updating). What would be the total knowledge gained about the system be if only the 
tests with the highest KG/$ were performed until the ceiling cost was spent?  The inputs 
and results for this scenario are as follows: 

**Results with KG updating turned off** 

**Results with KG updating turned on** 

Comparing the two results, you see the total knowledge gained with KG updating off 
and KG updating on is 655 and 621, respectively.  What this proves is that a score of 655 
KG isn’t even attainable for this system at $5,000,000, and it proves one of Valerdi’s 
stated limitations from earlier “The assumption that the entire trade space is known.” 
This is because the first set of results isn’t considering how some test results affect the 
KG index values of others, given a false notion of the total potential knowledge that can 
be gained about the system.     

Even more interesting are the following graphs created from the above results. 
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**Results with KG updating turned off** 

**Results with KG updating turned off** 

**Results with KG updating turned off** 
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These graphical results of Knowledge vs. Tests Executed, Total Cost, and Total Effort 
show a nearly linear increase in total knowledge gained as you perform more and more 
tests.  Below are the results with the KG updating turned on. 

**Results with KG updating turned on** 

**Results with KG updating turned on** 

**Results with KG updating turned on** 
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There is a clear economy of scale displayed in these results as more and more tests are 
performed.  In fact, observe that no matter how many tests performed beyond 
approximately a 600 KG value, there is no increase in the KG value.  Looking at the 
Knowledge vs. Total Cost graph, at approximately $4,000,000 spent, there is very little 
knowledge to be gained about the system by spending more money.  A tester being able 
to see this information as they proceed through T&E it can save a great deal of money 
and time.  Let’s compare the results of spending $4M vs. $5M on testing. 

This proves that this method can save a significant amount of time and money saved 
while losing very little knowledge about the system undergoing robustness testing.  Here 
are the gross savings: 

Cost Savings Effort Savings (time) Knowledge Lost
Difference: $1,000,000 3186 -10
% Gained: 20% 19% -2%
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One last observation is how the total knowledge value changes depending on how many 
tests you perform per round.  It’s evident that there is an optimal number of tests to be 
performed at a time (tests per round), provided adequate resources are available.  
Holding all other constraints constant, see the following results: 

**3 Tests per Round** 

**4 Tests per Round** 
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**5 Tests per Round** 

**6 Tests per Round** 
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Here is a summary of total knowledge vs tests performed per round. 

These results jump all over the place, but there is clearly an optimization to be found.  
One thing to note, is the total knowledge gained for 1 test per round is the maximum 
total knowledge value that can be obtained about the system.  The reason is, the fewer 
tests that are ran the more granular the information is about the system.  However, it 
would take entirely to long to perform tests one at a time, back to back.  Therefore, 4 
tests per round is the optimal number to run per round.  The reason is because it gets 
closest to the true potential total knowledge of the system, while reducing the testing 
period.   

The objective of this project was to create an algorithm that can optimize the knowledge 
about a complex system while performing robustness testing in the face of constraints.  
The results of this algorithm shows that there is a clear advantage to utilizing this T&E 
method of valuing testing, with obvious savings in cost and effort.  Additionally, this 
project has revealed that there is more research and work to be done to fully develop and 
validate this T&E optimization approach.   
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Appendices 

Source Code – Run Algorithm Button 
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Source Code – Clear Button 
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